
SQL is a standard language for storing, manipulating and retrieving data in
databases.

What is SQL?
SQL stands for Structured Query Language
SQL lets you access and manipulate databases
SQL became a standard of the American National Standards Institute (ANSI) in
1986, and of the International Organization for Standardization (ISO) in 1987

What Can SQL do?
SQL can execute queries against a database
SQL can retrieve data from a database
SQL can insert records in a database
SQL can update records in a database
SQL can delete records from a database
SQL can create new databases
SQL can create new tables in a database
SQL can create stored procedures in a database
SQL can create views in a database
SQL can set permissions on tables, procedures, and views

Using SQL in Your Web Site

To build a web site that shows data from a database, you will need:
An RDBMS database program (i.e. MS Access, SQL Server, MySQL)
To use a server-side scripting language, like PHP or ASP
To use SQL to get the data you want
To use HTML / CSS to style the page

RDBMS
 RDBMS stands for Relational Database Management System.
 RDBMS is the basis for SQL, and for all modern database systems such as MS SQL

Server, IBM DB2, Oracle, MySQL, and Microsoft Access.
 The data in RDBMS is stored in database objects called tables. A table is a

collection of related data entries and it consists of columns and rows.

SQL Table
SQL Table is a collection of data which is organized in terms of rows and columns. In
DBMS, the table is known as relation and row as a tuple.

Table is a simple form of data storage. A table is also considered as a convenient
representation of relations.

Let's see an example of the EMPLOYEE table:

EMP_ID EMP_NAME CITY PHONE_NO

1 Kristen Washington 7289201223

2 Anna Franklin 9378282882

3 Jackson Bristol 9264783838

4 Kellan California 7254728346

5 Ashley Hawaii 9638482678

In the above table, "EMPLOYEE" is the table name, "EMP_ID", "EMP_NAME", "CITY",
"PHONE_NO" are the column names. The combination of data of multiple columns
forms a row, e.g., 1, "Kristen", "Washington" and 7289201223 are the data of one row.

SQL Data Types
SQL data types can be broadly divided into following categories.

 Numeric data types such as int, tinyint, bigint, float, real etc.
 Date and Time data types such as Date, Time, Datetime etc.
 Character and String data types such as char, varchar, text etc.
 Unicode character string data types, for example nchar, nvarchar, ntext etc.
 Binary data types such as binary, varbinary etc.

Datatype Description

CHAR Fixed length with maximum length of 8,000

characters

VARCHAR Variable length storage with maximum

length of 8,000 characters

VARCHAR(max) Variable length storage with provided max

characters, not supported in MySQL

TEXT Variable length storage with maximum size

of 2GB data

SQL Character and String Data Types

Datatype From To

bit 0 1

tinyint 0 255

smallint -32,768 32,767

int -2,147,483,648 2,147,483,647

bigint -9,223,372,036,854,775,808 9,223,372,036,854,775,807

decimal -10^38 +1 10^38 -1

numeric -10^38 +1 10^38 -1

float -1.79E + 308 1.79E + 308

real -3.40E + 38 3.40E + 38

SQL Numeric Data Types

DATE Stores date in the format YYYY-MM-DD

TIME Stores time in the format HH:MI:SS

DATETIME Stores date and time information in the

format YYYY-MM-DD HH:MI:SS

TIMESTAMP Stores number of seconds passed since the

Unix epoch (‘1970-01-01 00:00:00’ UTC)

YEAR Stores year in 2 digit or 4 digit format.

Range 1901 to 2155 in 4-digit format. Range

70 to 69, representing 1970 to 2069.

SQL Date and Time Data Types

Operation on Table
 Create table
 Drop table
 Delete table
 Rename table

SQL Create Table
SQL create table is used to create a table in the database. To define the table, you
should define the name of the table and also define its columns and column's data
type.

Syntax
create table "table_name"
("column1" "data type",
"column2" "data type",
"column3" "data type",
...
"columnN" "data type");

Example
SQL> CREATE TABLE EMPLOYEE (
EMP_ID INT NOT NULL,
EMP_NAME VARCHAR (25) NOT NULL,
PHONE_NO INT NOT NULL,
ADDRESS CHAR (30),
PRIMARY KEY (ID)
);

If you create the table successfully, you can verify the table by
looking at the message by the SQL server. Else you can use DESC
command as follows:
SQL> DESC EMPLOYEE;

Field Type Null Key Default Extra

EMP_ID int(11) NO PRI NULL

EMP_NAME varchar(25) NO NULL

PHONE_NO NO int(11) NULL

ADDRESS YES NULL char(30)

Drop table
A SQL drop table is used to delete a table definition and all the data from a table. When
this command is executed, all the information available in the table is lost forever, so you
have to very careful while using this command.

Syntax
DROP TABLE "table_name";

SQL>DROP TABLE EMPLOYEE;

SQL DELETE table
In SQL, DELETE statement is used to delete rows from a table. We can use WHERE
condition to delete a specific row from a table. If you want to delete all the records from
the table, then you don't need to use the WHERE clause.
Syntax
DELETE FROM table_name WHERE condition;

Suppose, the EMPLOYEE table having the following records:

EMP_ID EMP_NAME CITY PHONE_NO SALARY

1 Kristen Chicago 9737287378 150000

2 Russell Austin 9262738271 200000

3 Denzel Boston 7353662627 100000

4 Angelina Denver 9232673822 600000

5 Robert Washington 9367238263 350000

6 Christian Los angels 7253847382 260000

The following query will DELETE an employee whose ID is 2.

SQL> DELETE FROM EMPLOYEE
WHERE EMP_ID = 3;

Now, the EMPLOYEE table would have the following records.

EMP_ID EMP_NAME CITY PHONE_NO SALARY

1 Kristen Chicago 9737287378 150000

2 Russell Austin 9262738271 200000

4 Angelina Denver 9232673822 600000

5 Robert Washington 9367238263 350000

6 Christian Los angels 7253847382 260000

NOTE: If you don't specify the WHERE condition, it will remove all the rows from the
table.

SQL SELECT Statement
In SQL, the SELECT statement is used to query or retrieve data from a table in the
database. The returns data is stored in a table, and the result table is known as result-set.
Syntax
SELECT column1, column2, ...
FROM table_name;
Here, the expression is the field name of the table that you want to select data from.
Use the following syntax to select all the fields available in the table:

SELECT * FROM table_name;

EMP_ID EMP_NAME CITY PHONE_NO SALARY

1 Kristen Chicago 9737287378 150000

2 Russell Austin 9262738271 200000

3 Angelina Denver 9232673822 600000

4 Robert Washington 9367238263 350000

5 Christian Los angels 7253847382 260000

To fetch the EMP_ID of all the employees, use the following query:
SELECT EMP_ID FROM EMPLOYEE;

Employee

EMP_ID

1

2

3

4

5

Q1. SELECT EMP_ID FROM EMPLOYEE;

Q2. SELECT EMP_NAME, SALARY FROM EMPLOYEE;

EMP_NAME SALARY

Kristen 150000

Russell 200000

Angelina 600000

Robert 350000

Christian 260000

SQL INSERT Statement
The SQL INSERT statement is used to insert a single or multiple data in a table.
In SQL, You can insert the data in two ways:
 Without specifying column name
 By specifying column name

Without specifying column name
If you want to specify all column values, you can specify or ignore the column names.
Syntax
INSERT INTO TABLE_NAME
VALUES (value1, value2, value 3, Value N);

Example: INSERT INTO EMPLOYEE VALUES (6, 'Marry', 'Canada', 600000, 48);

To insert partial column values, you must have to specify the column names.
Syntax
INSERT INTO TABLE_NAME
[(col1, col2, col3,.... col N)]
VALUES (value1, value2, value 3, Value N);

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

7 Jack null null 40

Example:
INSERT INTO EMPLOYEE (EMP_ID, EMP_NAME, AGE) VALUES (7, 'Jack', 40);

Note: In SQL INSERT query, if you add values for all columns then there is no need
to specify the column name. But, you must be sure that you are entering the values
in the same order as the column exists.

SQL Update Statement
The SQL UPDATE statement is used to modify the data that is already in the database.
The condition in the WHERE clause decides that which row is to be updated.

Syntax
UPDATE table_name
SET column1 = value1, column2 = value2, ...
WHERE condition;

Sample Table
EMPLOYEE

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

Updating single record
 Update the column EMP_NAME and set the value to 'Emma' in the row where SALARY

is 500000.
Syntax
UPDATE table_name
SET column_name = value
WHERE condition;
EXAMPLE:
UPDATE EMPLOYEE
SET EMP_NAME = 'Emma'
WHERE SALARY = 500000;

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Emma Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

Output: After executing this query, the EMPLOYEE table will look like:

Updating multiple records
If you want to update multiple columns, you should separate each field assigned with a
comma.
In the EMPLOYEE table, update the column EMP_NAME to 'Kevin' and CITY to 'Boston' where
EMP_ID is 5.
Syntax
UPDATE table_name
SET column_name = value1, column_name2 = value2
WHERE condition;
Query
UPDATE EMPLOYEE
SET EMP_NAME = 'Kevin', City = 'Boston'
WHERE EMP_ID = 5;

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Kevin Boston 200000 36

6 Marry Canada 600000 48

Without use of WHERE clause
If you want to update all row from a table, then you don't need to use the WHERE
clause. In the EMPLOYEE table, update the column EMP_NAME as 'Harry'.
Syntax
UPDATE table_name
SET column_name = value1;

Query
UPDATE EMPLOYEE
SET EMP_NAME = 'Harry';

EMP_ID EMP_NAME CITY SALARY AGE

1 Harry Chicago 200000 30

2 Harry Austin 300000 26

3 Harry Denver 100000 42

4 Harry Washington 500000 29

5 Harry Los angels 200000 36

6 Harry Canada 600000 48

SQL DELETE Statement
The SQL DELETE statement is used to delete rows from a table. Generally, DELETE statement
removes one or more records form a table.
Syntax
DELETE FROM table_name WHERE some_condition;
Deleting Single Record
Delete the row from the table EMPLOYEE where EMP_NAME = 'Kristen'.
This will delete the row having name ‘Kristen’..
Query
DELETE FROM EMPLOYEE
WHERE EMP_NAME = 'Kristen';
Deleting Multiple Record
Delete the row from the EMPLOYEE table where AGE is 30. This will delete two rows(first and
third row).
Query
DELETE FROM EMPLOYEE WHERE AGE= 30;

Delete all of the records
Delete all the row from the EMPLOYEE table. After this, no records
left to display. The EMPLOYEE table will become empty.
Syntax
DELETE * FROM table_name;
or
DELETE FROM table_name;

SQL - Constraints

 Constraints are the rules enforced on the data columns of a table. These
are used to limit the type of data that can go into a table. This ensures
the accuracy and reliability of the data in the database.

 Constraints could be either on a column level or a table level. The
column level constraints are applied only to one column, whereas the
table level constraints are applied to the whole table.

Integrity Constraints
Integrity constraints are used to ensure accuracy and consistency of the data in a
relational database.
 Data integrity is handled in a relational database through the concept of

referential integrity.
 There are many types of integrity constraints that play a role in Referential

Integrity (RI). These constraints include Primary Key, Foreign Key, Unique
Constraints and other constraints which are mentioned below.

 NOT NULL Constraint− Ensures that a column cannot have NULL value.
 DEFAULT Constraint − Provides a default value for a column when none is

specified.
 UNIQUE Constraint − Ensures that all values in a column are different.
 PRIMARY Key − Uniquely identifies each row/record in a database table.
 FOREIGN Key − Uniquely identifies a row/record in any of the given database

table.
 CHECK Constraint− The CHECK constraint ensures that all the values in a

column satisfies certain conditions.
 INDEX − Used to create and retrieve data from the database very quickly.

NOT NULL Constraint−
 By default, a column can hold NULL values. If you do not want a column

to have a NULL value, then you need to define such a constraint on this
column specifying that NULL is now not allowed for that column.

 A NULL is not the same as no data, rather, it represents unknown data.

For example, the following SQL query creates a new table called
CUSTOMERS and adds five columns, three of which, are ID NAME and AGE,
In this we specify not to accept NULLs −
CREATE TABLE CUSTOMERS(ID INT NOT NULL, NAME VARCHAR (20) NOT
NULL, AGE INT NOT NULL, ADDRESS CHAR (25) , SALARY DECIMAL (18, 2),
PRIMARY KEY (ID));

 If CUSTOMERS table has already been created, then to add a NOT NULL

constraint to the SALARY column in Oracle and MySQL, you would write
a query like the one that is shown in the following code block.

ALTER TABLE CUSTOMERS MODIFY SALARY DECIMAL (18, 2) NOT NULL;

DEFAULT Constraint

 For example, the following SQL creates a new table called CUSTOMERS and
adds five columns. Here, the SALARY column is set to 5000.00 by default, so in
case the INSERT INTO statement does not provide a value for this column, then
by default this column would be set to 5000.00.

CREATE TABLE CUSTOMERS(
 ID INT NOT NULL,
 NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
 ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2) DEFAULT 5000.00,
PRIMARY KEY (ID));
 If the CUSTOMERS table has already been created, then to add a DEFAULT

constraint to the SALARY column, you would write a query like the one which is
shown in the code block below.

ALTER TABLE CUSTOMERS MODIFY SALARY DECIMAL (18, 2) DEFAULT 5000.00;
Drop Default Constraint
 To drop a DEFAULT constraint, use the following SQL query.
ALTER TABLE CUSTOMERS ALTER COLUMN SALARY DROP DEFAULT;

The UNIQUE Constraint

The UNIQUE Constraint prevents two records from having identical values in a
column. In the CUSTOMERS table, for example, you might want to prevent two or
more people from having an identical age.

 For example, the following SQL query creates a new table called CUSTOMERS

and adds five columns. Here, the AGE column is set to UNIQUE, so that you
cannot have two records with the same age.

 If the CUSTOMERS table has already been created, then to add a UNIQUE

constraint to the AGE column. You would write a statement like the query that
is given in the code block below.

CREATE TABLE CUSTOMERS
(ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
 AGE INT NOT NULL UNIQUE,
ADDRESS CHAR (25) ,
SALARY DECIMAL (18, 2),
PRIMARY KEY (ID));

ALTER TABLE CUSTOMERS MODIFY AGE INT NOT NULL UNIQUE;

You can also use the following syntax, which supports naming the
constraint in multiple columns as well.

ALTER TABLE CUSTOMERS ADD CONSTRAINT myUniqueConstraint UNIQUE(AGE,
SALARY);

DROP a UNIQUE Constraint
To drop a UNIQUE constraint, use the following SQL query.
ALTER TABLE CUSTOMERS DROP CONSTRAINT myUniqueConstraint;

 CHECK Constraint

The CHECK Constraint enables a condition to check the value
being entered into a record. If the condition evaluates to false,
the record violates the constraint and isn't entered the table.

Example
For example, the following program creates a new table called CUSTOMERS and adds five
columns. Here, we add a CHECK with AGE column, so that you cannot have any CUSTOMER
who is below 18 years.

CREATE TABLE CUSTOMERS
(ID INT NOT NULL,
 NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL CHECK (AGE >= 18),
ADDRESS CHAR (25) ,
 SALARY DECIMAL (18, 2),
 PRIMARY KEY (ID));

 If the CUSTOMERS table has already been created, then to add a CHECK constraint to AGE

column, you would write a statement like the one given below.

ALTER TABLE CUSTOMERS MODIFY AGE INT NOT NULL CHECK (AGE >= 18);

 You can also use the following syntax, which supports naming the constraint in multiple

columns as well −

ALTER TABLE CUSTOMERS ADD CONSTRAINT myCheckConstraint CHECK(AGE >=
18);

DROP a CHECK Constraint

To drop a CHECK constraint, use the following SQL syntax. This syntax does not work with
MySQL.
 ALTER TABLE CUSTOMERS DROP CONSTRAINT myCheckConstraint;

Example Employee Table
 CREATE TABLE EMPLOYEE
 (FNAME VARCHAR2(40), MINIT VARCHAR2(40), LNAME VARCHAR2(40),
 SSN int PRIMARY KEY,
 BDATE DATE,
 ADDRESS VARCHAR2(40),
 SEX CHAR(1) CONSTRAINT CHK_SEX CHECK (SEX IN (‘M’,’F’,’m’,’f’)),
 SALARY int,
 SUPERSSN int REFERENCES EMPLOYEE(SSN),
 DNO int);

 ALTER TABLE EMPLOYEE ADD FOREIGN KEY(DNO) REFERENCES DEPARTMENT
(DNUMBER);

Foreign Key

 A foreign key is a key used to link two tables together. This is sometimes also called

as a referencing key.

 A Foreign Key is a column or a combination of columns whose values match a

Primary Key in a different table.

 The relationship between 2 tables matches the Primary Key in one of the tables

with a Foreign Key in the second table.

 If a table has a primary key defined on any field(s), then you cannot have two

records having the same value of that field(s).

Example

Consider the structure of the following two tables.
CUSTOMERS table
CREATE TABLE CUSTOMERS(
C_ID INT NOT NULL,
 NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25) ,
 SALARY DECIMAL (18, 2),
PRIMARY KEY (ID));

ORDERS table
CREATE TABLE ORDERS
(O_ID INT NOT NULL,
 DATE DATETIME,
CUSTOMER_ID INT references CUSTOMERS(C_ID),
AMOUNT double,
PRIMARY KEY (ID));

 If the ORDERS table has already been created and the foreign key has not yet been set, the

use the syntax for specifying a foreign key by altering a table.

ALTER TABLE ORDERS ADD FOREIGN KEY (Customer_ID) REFERENCES
CUSTOMERS (ID);

DROP a FOREIGN KEY Constraint

 To drop a FOREIGN KEY constraint, use the following SQL syntax.

ALTER TABLE ORDERS DROP FOREIGN KEY;

LIKE OPERATOR
The SQL LIKE Operator:
The LIKE operator is used in a WHERE clause to search for a specified pattern in a column.
There are two wildcards often used in conjunction with the LIKE operator:
% - The percent sign represents zero, one, or multiple characters
_ - The underscore represents a single character

The percent sign and the underscore can also be used in combinations!
LIKE Syntax

SELECT column1, column2, ...
FROM table_name
WHERE columnN LIKE pattern;

LIKE Operator Description

WHERE CustomerName LIKE 'a%' Finds any values that start with "a"

WHERE CustomerName LIKE '%a' Finds any values that end with "a"

WHERE CustomerName LIKE '%or%' Finds any values that have "or" in any
position

WHERE CustomerName LIKE '_r%' Finds any values that have "r" in the
second position

WHERE CustomerName LIKE 'a__%' Finds any values that start with "a" and
are at least 3 characters in length

WHERE ContactName LIKE 'a%o' Finds any values that start with "a" and
ends with "o"

Tip: You can also combine any number of conditions using AND or OR operators.
Here are some examples showing different LIKE operators with '%' and '_' wildcards:

 The following SQL statement selects all customers with a Customer Name starting with

"a":

SELECT * FROM Customers
WHERE CustomerName LIKE 'a%';

 The following SQL statement selects all customers with a CustomerName that have "or"

in any position:

SELECT * FROM Customers
WHERE CustomerName LIKE '%or%';

 The following SQL statement selects all customers with a CustomerName that have "r" in

the second position:

SELECT * FROM Customers
WHERE CustomerName LIKE '_r%';

Exercise:
1. Retrieve the birthdate and address of the employee whose name is 'Franklin T. Wong'
2. Retrieve all customers with a CustomerName that starts with "a" and are at least 3
characters in length
3. Retrieve all customers with a ContactName that starts with "a" and ends with "o“
4. selects all customers with a CustomerName that does NOT start with "a"

 The following
SELECT * FROM Customers
WHERE CustomerName LIKE 'a__%';

 The following SQL statement selects all customers with a ContactName that starts

with "a" and ends with "o":

SELECT * FROM Customers
WHERE ContactName LIKE 'a%o';

 The following SQL statement selects all customers with a CustomerName that does

NOT start with "a":
SELECT * FROM Customers
WHERE CustomerName NOT LIKE 'a%';

 Retrieve the birthdate and address of the employee whose name is 'Franklin T.

Wong'

SELECT BDATE, ADDRESS FROM EMPLOYEE WHERE FNAME='Franklin' AND MINIT='T'
AND LNAME='Wong'

SQL Aliases
 SQL aliases are used to give a table, or a column in a table, a temporary name.
 Aliases are often used to make column names more readable.
 An alias only exists for the duration of the query.

Alias Column Syntax
SELECT column_name AS alias_name
FROM table_name;

Alias Table Syntax
SELECT column_name(s)
FROM table_name AS alias_name;

Alias for Columns Examples

 The following SQL statement creates two aliases, one for the
CustomerID column and one for the CustomerName column:

Example
 SELECT CustomerID AS ID, CustomerName AS CName

FROM Customers;

The following SQL statement creates two aliases, one for the CustomerName column and
one for the ContactName column.

Note: It requires double quotation marks or square brackets if the alias name contains
spaces:

Example
 SELECT CustomerName AS Customer, ContactName AS [Contact Person]

FROM Customers;

The following SQL statement creates an alias named "Address" that combine four columns
(Address, PostalCode, City and Country):
Example

Note: To get the SQL statement above to work in MySQL use the following:

SELECT CustomerName, CONCAT(Address,', ',PostalCode,', ',City,', ',Country) AS Address
FROM Customers;

CustomerName Address

Alfreds Futterkiste Obere Str. 57, 12209 Berlin, Germany

Alias for Tables Example
The following SQL statement selects all the orders from the customer with CustomerID=4
(Around the Horn).
We use the "Customers" and "Orders" tables, and give them the table aliases of "c" and "o"
respectively (Here we use aliases to make the SQL shorter):

SELECT o.OrderID, o.OrderDate, c.CustomerName
FROM Customers AS c, Orders AS o
WHERE c.CustomerName="Around the Horn" AND c.CustomerID=o.CustomerID;

Aliases can be useful when:
 There are more than one table involved in a query
 Functions are used in the query
 Column names are big or not very readable
 Two or more columns are combined together

The SQL IN Operator(Shorthand for multiple OR Conditions)

 The IN operator allows you to specify multiple values in a WHERE

clause.
 The IN operator is a shorthand for multiple OR conditions.
IN Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1, value2, ...);
or:
SELECT column_name(s)
FROM table_name
WHERE column_name IN (SELECT STATEMENT);

IN Operator Examples

 The following SQL statement selects all customers that are located in

"Germany", "France" or "UK":
Example

SELECT * FROM Customers
WHERE Country IN ('Germany', 'France', 'UK');

 The following SQL statement selects all customers that are NOT located in
"Germany", "France" or "UK":

SELECT * FROM Customers
WHERE Country NOT IN ('Germany', 'France', 'UK');

 The following SQL statement selects all customers that are from the same countries

as the suppliers:

Example

SELECT * FROM Customers
WHERE Country IN (SELECT Country FROM Suppliers);

The SQL AND, OR and NOT Operators

 The WHERE clause can be combined with AND, OR, and NOT operators.
 The AND and OR operators are used to filter records based on more than one

condition:
 The AND operator displays a record if all the conditions separated by AND are TRUE.
 The OR operator displays a record if any of the conditions separated by OR is TRUE.
 The NOT operator displays a record if the condition(s) is NOT TRUE.

AND Syntax
SELECT column1, column2, ...
FROM table_name
WHERE condition1 AND condition2 AND condition3 ...;

OR Syntax
SELECT column1, column2, ...
FROM table_name
WHERE condition1 OR condition2 OR condition3 ...;

NOT Syntax
SELECT column1, column2, ...
FROM table_name
WHERE NOT condition;

AND Example
 The following SQL statement selects all fields from "Customers" where country is

"Germany" AND city is "Berlin":
Example

SELECT * FROM Customers
WHERE Country='Germany' AND City='Berlin';

Exercise:

 Retrieve all fields from "Customers" where city is "Berlin" OR "München":

 Retrieve fields from "Customers" where country is "Germany" OR "Spain":

NOT Example

 Retrieve all fields from "Customers" where country is NOT "Germany“

 Retrieve all fields from "Customers" where country is "Germany" AND city must be

"Berlin" OR "München" (use parenthesis to form complex expressions)

 Retrieve all fields from "Customers" where country is NOT "Germany" and NOT
"USA":

Example 1.

SELECT * FROM Customers
WHERE City='Berlin' OR City='München';

Example 2
SELECT * FROM Customers
WHERE Country='Germany' OR Country='Spain';

Example 3
SELECT * FROM Customers
WHERE NOT Country='Germany';

Example 4
SELECT * FROM Customers
WHERE Country='Germany' AND (City='Berlin' OR City='München');

Example 5
SELECT * FROM Customers
WHERE NOT Country='Germany' AND NOT Country='USA';

The SQL BETWEEN Operator
 The BETWEEN operator selects values within a given range. The values can be numbers,

text, or dates.

The BETWEEN operator is inclusive: begin and end values are included.
BETWEEN Syntax

SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;

BETWEEN Example
 The following SQL statement selects all products with a price BETWEEN 10 and 20:
Example
SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20;

NOT BETWEEN Example
 To display the products outside the range of the previous example, use NOT BETWEEN:
 Example
SELECT * FROM Products
WHERE Price NOT BETWEEN 10 AND 20;

BETWEEN with IN Example
 The following SQL statement selects all products with a price BETWEEN 10 and 20. In

addition; do not show products with a CategoryID of 1,2, or 3:
 Example

SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20
AND NOT CategoryID IN (1,2,3);

BETWEEN Text Values Example
 The following SQL statement selects all products with a ProductName BETWEEN

Carnarvon Tigers and Mozzarella di Giovanni:
Example

SELECT * FROM Products
WHERE ProductName BETWEEN 'Carnarvon Tigers' AND 'Mozzarella di Giovanni'
ORDER BY ProductName;

 The following SQL statement selects all products with a ProductName BETWEEN

Carnarvon Tigers and Chef Anton's Cajun Seasoning:
Example
SELECT * FROM Products
WHERE ProductName BETWEEN "Carnarvon Tigers" AND "Chef Anton's Cajun Seasoning"
ORDER BY ProductName;

SQL Sub Query
A Subquery is a query within another SQL query and embedded within the WHERE
clause.
Important Rule:
 A subquery can be placed in a number of SQL clauses like WHERE clause, FROM

clause, HAVING clause.
 You can use Subquery with SELECT, UPDATE, INSERT, DELETE statements along with

the operators like =, <, >, >=, <=, IN, BETWEEN, etc.
 A subquery is a query within another query. The outer query is known as the main

query, and the inner query is known as a subquery.
 Subqueries are on the right side of the comparison operator.
 A subquery is enclosed in parentheses.
 In the Subquery, ORDER BY command cannot be used. But GROUP BY command can

be used to perform the same function as ORDER BY command.

Subqueries with the Select Statement
SQL subqueries are most frequently used with the Select statement.
Syntax
SELECT column_name
FROM table_name
WHERE column_name expression operator
(SELECT column_name from table_name WHERE ...);

Example
Consider the EMPLOYEE table have the following records:

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 Alina 29 UK 6500.00

5 Kathrin 34 Bangalore 8500.00

6 Harry 42 China 4500.00

7 Jackson 25 Mizoram 10000.00

The subquery with a SELECT statement will be:
SELECT *
 FROM EMPLOYEE
 WHERE ID IN (SELECT ID
 FROM EMPLOYEE
 WHERE SALARY > 4500);

Subqueries with the INSERT Statement

 SQL subquery can also be used with the Insert statement. In the insert statement, data

returned from the subquery is used to insert into another table.
 In the subquery, the selected data can be modified with any of the character, date

functions.

Syntax:
INSERT INTO table_name (column1, column2, column3....)
SELECT *
FROM table_name
WHERE VALUE OPERATOR

Example
Consider a table EMPLOYEE_BKP with similar as EMPLOYEE.

 Now use the following syntax to copy the complete EMPLOYEE table into the
EMPLOYEE_BKP table.

INSERT INTO EMPLOYEE_BKP
 SELECT * FROM EMPLOYEE
 WHERE ID IN (SELECT ID
 FROM EMPLOYEE);

Subqueries with the UPDATE Statement

The subquery of SQL can be used in conjunction with the Update statement. When a
subquery is used with the Update statement, then either single or multiple columns in
a table can be updated.

Syntax
UPDATE table
SET column_name = new_value
WHERE VALUE OPERATOR
 (SELECT COLUMN_NAME
 FROM TABLE_NAME
 WHERE condition);

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

4 Alina 29 UK 1625.00

5 Kathrin 34 Bangalore 2125.00

6 Harry 42 China 1125.00

7 Jackson 25 Mizoram 10000.00

Example
Let's assume we have an EMPLOYEE_BKP table available which is backup of EMPLOYEE
table.
 The given example updates the SALARY by .25 times in the EMPLOYEE table for all

employee whose AGE is greater than or equal to 29.

UPDATE EMPLOYEE
SET SALARY = SALARY * 0.25
 WHERE AGE IN (SELECT AGE FROM EMPLOYEE_BKP
 WHERE AGE >= 29);

This would impact three rows, and finally, the EMPLOYEE table would have the following
records.

Subqueries with the DELETE Statement

The subquery of SQL can be used in conjunction with the Delete statement just like any
other statements mentioned above.
Syntax
DELETE FROM TABLE_NAME
WHERE VALUE OPERATOR
 (SELECT COLUMN_NAME
 FROM TABLE_NAME
 WHERE condition);

Example
Let's assume we have an EMPLOYEE_BKP table available which is backup of EMPLOYEE
table.
 The given example deletes the records from the EMPLOYEE table for all EMPLOYEE

whose AGE is greater than or equal to 29.

DELETE FROM EMPLOYEE
 WHERE AGE IN (SELECT AGE FROM EMPLOYEE_BKP
 WHERE AGE >= 29);

ID NAME AGE ADDRESS SALARY

1 John 20 US 2000.00

2 Stephan 26 Dubai 1500.00

3 David 27 Bangkok 2000.00

7 Jackson 25 Mizoram 10000.00

This would impact three rows, and finally, the EMPLOYEE table would have the
following records.

Exercise:

Faculty(fid,fname,qualification,depid)

Department(depid,dname)

Example 1. find name of faculty working in ‘it’ department.

Example 2. find name of faculty working in ‘it’ or ‘cs’ department.

Solution:

Example 1:

select fname from faculty
where depid in(select depid from department where dname='cs');

Example 2:
select fname from faculty
 where depid in(select depid from department where dname in('cs','it'));

The SQL EXISTS Operator
 The EXISTS operator is used to test for the existence of any record in a sub-query.
 The EXISTS operator returns true if the sub-query returns one or more records.

EXISTS Syntax
SELECT column_name(s)
FROM table_name
WHERE EXISTS
(SELECT column_name FROM table_name WHERE condition);

 The following SQL statement returns TRUE and will return all records of student table
Example:
 Select *
 from student
 where exists(select * from department where depid=1);

Since inner query is returning value as department table is having one record with depid=1
there fore outer query will return all records of student table

 Select *
 from student
 where exists(select * from department where depid=5);

Here inner query is not returning value as department table is having no record with
depid=5 ,therefore outer query will not any records of student table

Not exist is just opposite of Exist i.e. if inner query is true(RETURNING VALUES) the outer
query will return empty set and vice versa.

 COUNT FUNCTION
 COUNT function is used to Count the number of rows in a database table. It can work

on both numeric and non-numeric data types.
 COUNT function uses the COUNT(*) that returns the count of all the rows in a

specified table. COUNT(*) considers duplicate and Null.
Syntax
COUNT(*) OR
 COUNT([ALL|DISTINCT] expression)

PRODUCT COMPANY QTY RATE COST

Item1 Com1 2 10 20

Item2 Com2 3 25 75

Item3 Com1 2 30 60

Item4 Com3 5 10 50

Item5 Com2 2 20 40

Item6 Cpm1 3 25 75

Item7 Com1 5 30 150

Item8 Com1 3 10 30

Item9 Com2 2 25 50

Item10 Com3 4 30 120

Example: COUNT()
SELECT COUNT(*)
FROM PRODUCT_MAST;

Output:
10

Example: COUNT with WHERE
SELECT COUNT(*)
FROM PRODUCT_MAST;
WHERE RATE>=20;

Output:
7

Example: COUNT() with DISTINCT
SELECT COUNT(DISTINCT COMPANY)
FROM PRODUCT_MAST;
Output:
3

Example: COUNT() with GROUP BY
SELECT COMPANY, COUNT(*)
FROM PRODUCT_MAST
GROUP BY COMPANY;
HAVING COUNT(*)>2;

Output:
Com1 5 Com2 3

SUM Function
Sum function is used to calculate the sum of all selected columns. It works on numeric
fields only.
Syntax
SUM()
or
SUM([ALL|DISTINCT] expression)

Example: SUM()
SELECT SUM(COST)
FROM PRODUCT_MAST;

Output:
670

SELECT SUM(COST)
FROM PRODUCT_MAST
WHERE QTY>3;
Output:
320

Example: SUM() with GROUP BY
SELECT SUM(COST)
FROM PRODUCT_MAST
WHERE QTY>3
GROUP BY COMPANY;

Output:
Com1 150 Com2 170

Example: SUM() with HAVING
SELECT COMPANY, SUM(COST)
FROM PRODUCT_MAST
GROUP BY COMPANY
HAVING SUM(COST)>=170;
Output:
Com1 335 Com3 170

 AVG function
The AVG function is used to calculate the average value of the numeric type. AVG function
returns the average of all non-Null values.
Syntax
AVG()
or
AVG([ALL|DISTINCT] expression)
Example:
SELECT AVG(COST)
FROM PRODUCT_MAST;
Output:
67.00

MAX Function
MAX function is used to find the maximum value of a certain column. This function
determines the largest value of all selected values of a column.
Syntax
MAX() OR
 MAX([ALL|DISTINCT] expression)
Example:
SELECT MAX(RATE)
FROM PRODUCT_MAST;
30

SQL Clauses
The following are the various SQL clauses:

1. GROUP BY
 SQL GROUP BY statement is used to arrange identical data into groups. The GROUP

BY statement is used with the SQL SELECT statement.
 The GROUP BY statement follows the WHERE clause in a SELECT statement and

precedes the ORDER BY clause.

The GROUP BY statement is used with aggregation function.

Syntax
SELECT column
FROM table_name
WHERE conditions
GROUP BY column
ORDER BY column

PRODUCT COMPANY QTY RATE COST

Item1 Com1 2 10 20

Item2 Com2 3 25 75

Item3 Com1 2 30 60

Item4 Com3 5 10 50

Item5 Com2 2 20 40

Item6 Cpm1 3 25 75

Item7 Com1 5 30 150

Item8 Com1 3 10 30

Item9 Com2 2 25 50

Item10 Com3 4 30 120

PRODUCT_MAST

SELECT COMPANY, COUNT(*)
FROM PRODUCT_MAST
GROUP BY COMPANY;
Output:
Com1 5 Com2 3 Com3 2

Example:
Consider schema :

 Student(sid,sname,branch,marks)

 Find total number of students in each branch
 Find total marks of each branch
 Find average marks of each branch having marks branch only CSE or IT
 find average marks of students who are not from department 1 or 3.

Solutions:
Example 1:
Select branch,count(*)
from student
group by branch;

Example 2:
Select branch,sum(marks)
From student
Group by branch;

Example 3:
select branch,avg(marks)
 from student
group by branch
having branch in('cs','it');

Example 4:
Select branch,avg(marks) from student where branch in(select dname
from department where depid not in(1,3)) group by branch;

 HAVING
 HAVING clause is used to specify a search condition for a group or an aggregate.
 Having is used in a GROUP BY clause.
 If you are not using GROUP BY clause then you can use HAVING function like a

WHERE clause.

Syntax:
SELECT column1, column2
FROM table_name
WHERE conditions
GROUP BY column1, column2
HAVING conditions
ORDER BY column1, column2;

Example:
SELECT COMPANY, COUNT(*)
FROM PRODUCT_MAST
GROUP BY COMPANY
HAVING COUNT(*)>2;

Output:
Com1 5 Com2 3

ORDER BY
The ORDER BY clause sorts the result-set in ascending or descending order.
It sorts the records in ascending order by default. DESC keyword is used to sort the records
in descending order.
Syntax:
SELECT column1, column2
FROM table_name
WHERE condition
ORDER BY column1, column2... ASC|DESC;

Where
ASC: It is used to sort the result set in ascending order by expression.
DESC: It sorts the result set in descending order by expression.

Example: Sorting Results in Ascending Order
Table:
CUSTOMER

CUSTOMER_ID NAME ADDRESS

12 Kathrin US

23 David Bangkok

34 Alina Dubai

45 John UK

56 Harry US

Enter the following SQL statement:
SELECT *
FROM CUSTOMER
ORDER BY NAME;
 CUSTOMER_ID NAME ADDRESS

34 Alina Dubai

23 David Bangkok

56 Harry US

45 John UK

12 Kathrin US

OUTPUT

SQL JOIN
As the name shows, JOIN means to combine something. In case of SQL, JOIN means
"to combine two or more tables".
In SQL, JOIN clause is used to combine the records from two or more tables in a
database.

Types of SQL JOIN
 NATURAL JOIN
 INNER JOIN
 LEFT JOIN
 RIGHT JOIN
 FULL JOIN

EMP_ID EMP_NAME CITY SALARY AGE

1 Angelina Chicago 200000 30

2 Robert Austin 300000 26

3 Christian Denver 100000 42

4 Kristen Washington 500000 29

5 Russell Los angels 200000 36

6 Marry Canada 600000 48

EMPLOYEE

PROJECT_NO EMP_ID DEPARTMENT

101 1 Testing

102 2 Development

103 3 Designing

104 4 Development

PROJECT

INNER JOIN
In SQL, INNER JOIN selects records that have matching values in both tables as long as the
condition is satisfied. It returns the combination of all rows from both the tables where the
condition satisfies.
Syntax
SELECT table1.column1, table1.column2, table2.column1,....
FROM table1
INNER JOIN table2
ON table1.matching_column = table2.matching_column;

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT
FROM EMPLOYEE
INNER JOIN PROJECT
ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

LEFT JOIN
The SQL left join returns all the values from left table and the matching values from the right
table. If there is no matching join value, it will return NULL.
Syntax
SELECT table1.column1, table1.column2, table2.column1,....
FROM table1
LEFT JOIN table2
ON table1.matching_column = table2.matching_column;

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT
FROM EMPLOYEE
LEFT JOIN PROJECT
ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

Russell NULL

Marry NULL

RIGHT JOIN
In SQL, RIGHT JOIN returns all the values from the values from the rows of right table and
the matched values from the left table. If there is no matching in both tables, it will return
NULL.

Syntax
SELECT table1.column1, table1.column2, table2.column1,....
FROM table1
RIGHT JOIN table2
ON table1.matching_column = table2.matching_column;

SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT
FROM EMPLOYEE
RIGHT JOIN PROJECT
ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;
Output

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

FULL JOIN
In SQL, FULL JOIN is the result of a combination of both left and right outer join. Join
tables have all the records from both tables. It puts NULL on the place of matches not
found.
Syntax
SELECT table1.column1, table1.column2, table2.column1,....
FROM table1
FULL JOIN table2
ON table1.matching_column = table2.matching_column;
Query
SELECT EMPLOYEE.EMP_NAME, PROJECT.DEPARTMENT
FROM EMPLOYEE
FULL JOIN PROJECT
ON PROJECT.EMP_ID = EMPLOYEE.EMP_ID;

EMP_NAME DEPARTMENT

Angelina Testing

Robert Development

Christian Designing

Kristen Development

Russell NULL

Marry NULL

SQL Set Operation
The SQL Set operation is used to combine the two or more SQL SELECT statements.

Types of Set Operation
Union
UnionAll
Intersect
Minus

Union
The SQL Union operation is used to combine the result of two or more SQL SELECT queries.
In the union operation, all the number of datatype and columns must be same in both the
tables on which UNION operation is being applied.
The union operation eliminates the duplicate rows from its result set.
Syntax
SELECT column_name FROM table1
UNION
SELECT column_name FROM table2;

ID NAME

1 Jack

2 Harry

3 Jackson

The First table

ID NAME

3 Jackson

4 Stephan

5 David

The Second table

Union SQL query will be:
SELECT * FROM First
UNION
SELECT * FROM Second;

ID NAME

1 Jack

2 Harry

3 Jackson

4 Stephan

5 David

The result set table will look like:

Union All
Union All operation is equal to the Union operation. It returns the set without removing
duplication and sorting the data.
Syntax:
SELECT column_name FROM table1
UNION ALL
SELECT column_name FROM table2;

Example: Using the above First and Second table.
Union All query will be like:
SELECT * FROM First
UNION ALL
SELECT * FROM Second;

ID NAME

1 Jack

2 Harry

3 Jackson

3 Jackson

4 Stephan

5 David

The result set table will look like:

Intersect
It is used to combine two SELECT statements. The Intersect operation returns the common
rows from both the SELECT statements.
In the Intersect operation, the number of datatype and columns must be the same.
It has no duplicates and it arranges the data in ascending order by default.
Syntax
SELECT column_name FROM table1
INTERSECT
SELECT column_name FROM table2;

Example:
Using the above First and Second table.
Intersect query will be:
SELECT * FROM First
INTERSECT
SELECT * FROM Second;

ID NAME

3 Jackson

Minus
It combines the result of two SELECT statements. Minus operator is used to display the
rows which are present in the first query but absent in the second query.
It has no duplicates and data arranged in ascending order by default.
Syntax:
SELECT column_name FROM table1
MINUS
SELECT column_name FROM table2;
Example
Using the above First and Second table.
Minus query will be:
SELECT * FROM First
MINUS
SELECT * FROM Second;

ID NAME

1 Jack

2 Harry

Views in SQL

 Views in SQL are considered as a virtual table. A view also contains rows and columns.
 To create the view, we can select the fields from one or more tables present in the

database.
 A view can either have specific rows based on certain condition or all the rows of a

table.

STU_ID NAME ADDRESS

1 Stephan Delhi

2 Kathrin Noida

3 David Ghaziabad

4 Alina Gurugram

Sample table:

Student_Detail

STU_ID NAME MARKS AGE

1 Stephan 97 19

2 Kathrin 86 21

3 David 74 18

4 Alina 90 20

5 John 96 18

Student_Marks

Creating view
A view can be created using the CREATE VIEW statement. We can create a view from a
single table or multiple tables.
Syntax:
CREATE VIEW view_name AS
SELECT column1, column2.....
FROM table_name
WHERE condition;

Creating View from a single table
In this example, we create a View named firstview from the table Student.

Query:
create view firstview as
select id, sname from student
where branch='it';

Just like table query, we can query the view to view the data.
SELECT * FROM firstview;

Creating View from multiple tables
 View from multiple tables can be created by simply include multiple tables in the

SELECT statement.
 In the given example, a view is created named MULTIPLETABLEVIEW from two tables

Student and Department.

Query:

CREATE VIEW MULTIPLETABLEVIEW AS
SELECT ID, SNAME, DNAME FROM STUDENT, DEPARTMENT
 WHERE STUDENT.BRANCH=DEPARTMENT.DNAME;

To display data of View MarksView:
SELECT * FROM MULTIPLETABLEVIEW;

Deleting View
A view can be deleted using the Drop View statement.

Syntax
DROP VIEW view_name;

Example:
If we want to delete the View FIRSTVIEW, we can do this as:
DROP VIEW FIRSTVIEW;

CREATE TABLE EMPLOYEE (FNAME VARCHAR2(40), MINIT VARCHAR2(40), LNAME
VARCHAR2(40),
SSN NUMBER(5) PRIMARY KEY,
BDATE DATE, ADDRESS VARCHAR2(40),
SEX CHAR(1) CONSTRAINT CHK_SEX CHECK (SEX IN (‘M’,’F’,’m’,’f’)),
SALARY NUMBER(5),
SUPERSSN NUMBER(5) REFERENCES EMPLOYEE(SSN),
DNO NUMBER(1));

CREATE TABLE DEPARTMENT
(DNAME VARCHAR2(20),
DNUMBER NUMBER(1) PRIMARY KEY,
MGRSSN NUMBER(5) REFERENCES EMPLOYEE(SSN),
MGRSTARTDATE DATE);

CREATE TABLE DEPT_LOCATIONS
(DNUMBER NUMBER(1),
DLOCATION VARCHAR2(40),
PRIMARY KEY(DNUMBER, DLOCATION),
FOREIGN KEY(DNUMBER) REFERENCES DEPARTMENT(DNUMBER));

CREATE TABLE PROJECT
(PNAME VARCHAR2(40),
PNUMBER NUMBER(2) PRIMARY KEY,
PLOCATION VARCHAR2(40),
DNUM NUMBER(1) REFERENCES DEPARTMENT(DNUMBER));

CREATE TABLE WORKS_ON(ESSN NUMBER(5),
PNO NUMBER(2),
HOURS NUMBER(5),
PRIMARY KEY(ESSN, PNO),
FOREIGN KEY(ESSN) REFERENCES EMPLOYEE(SSN),
FOREIGN KEY(PNO) REFERENCES PROJECT(PNUMBER));

CREATE TABLE DEPENDENT (ESSN NUMBER(5),
DEPENDENT_NAME VARCHAR2(40),
SEX CHAR(1) CONSTRAINT CHK_SEX2 CHECK (SEX IN (‘M’,’F’,’m’,’f’)),
BDATE DATE,
RELATIONSHIP VARCHAR2(40),
 PRIMARY KEY(ESSN, DEPENDENT_NAME),
FOREIGN KEY(ESSN) REFERENCES EMPLOYEE(SSN));

 Q1. Display all the details of all employees working in the company.
SELECT * FROM EMPLOYEE;

 Q2. Display ssn, lname, fname, address of employees who work in department no 7.
SELECT SSN, LNAME, FNAME, ADDRESS FROM EMPLOYEE WHERE DNO=7;

 Q3. Retrieve the birthdate and address of the employee whose name is 'Franklin T.

Wong'
SELECT BDATE, ADDRESS FROM EMPLOYEE WHERE FNAME='Franklin' AND MINIT='T' AND
LNAME='Wong';

 Q4. Retrieve the name and salary of every employee
SELECT FNAME||' '||MINIT||' '||LNAME AS NAME, SALARY FROM EMPLOYEE;

 Q5. Retrieve all distinct salary values
SELECT DISTINCT(SALARY) FROM EMPLOYEE;

 Q6. Retrieve all employee names whose address is in ‘Bellaire’
SELECT FNAME||' '||MINIT||' '||LNAME AS NAME FROM EMPLOYEE WHERE ADDRESS
LIKE '%Bellaire%';

 Q7. Retrieve all employees who were born during the 1950s
SELECT * FROM EMPLOYEE WHERE EXTRACT(YEAR FROM BDATE)=1950;

 Q8. Retrieve all employees in department 5 whose salary is between
50,000 and 60,000(inclusive)

SELECT * FROM EMPLOYEE WHERE DNO=5 AND SALARY BETWEEN 50000
AND 60000;
 Q9. Retrieve the names of all employees who do not have supervisors

SELECT FNAME||' '||MINIT||' '||LNAME AS NAME FROM EMPLOYEE
WHERE SUPERSSN IS NULL;

 Q10. Retrieve SSN and department name for all employees
SELECT E.SSN, D.DNAME FROM EMPLOYEE E, DEPARTMENT D WHERE
E.DNO=D.DNUMBER;

 Q11. Retrieve the name and address of all employees who work for the 'Research'
department

 SELECT E.FNAME||' '||E.MINIT||' '||E.LNAME AS NAME, E.ADDRESS FROM EMPLOYEE

E, DEPARTMENT D WHERE E.DNO=D.DNUMBER AND D.DNAME='Research';

 Q12. For every project located in 'Stafford', list the project number, the controlling

department number, and the department manager's last name, address, and birthdate.
SELECT P.PNUMBER, P.DNUM, E.LNAME, E.ADDRESS, E.BDATE FROM PROJECT P, EMPLOYEE
E, DEPARTMENT D WHERE P.PLOCATION='Stafford' AND P.DNUM=D.DNUMBER AND
D.MGRSSN=E.SSN;

 Q13. For each employee, retrieve the employee's name, and the name of his or her
immediate supervisor.

SELECT E.FNAME||' '||E.MINIT||' '||E.LNAME EMPLOYEE, M.FNAME||' '||M.MINIT||'
'||M.LNAME MANAGER FROM EMPLOYEE E, EMPLOYEE M WHERE E.SUPERSSN=M.SSN;

 Q14. Retrieve all combinations of Employee Name and Department Name
SELECT E.FNAME||' '||E.MINIT||' '||E.LNAME NAME, D.DNAME FROM EMPLOYEE E,
DEPARTMENT D WHERE E.DNO=D.DNUMBER;

 Q14. Retrieve all combinations of Employee Name and Department Name

SELECT E.FNAME||' '||E.MINIT||' '||E.LNAME NAME, D.DNAME FROM
EMPLOYEE E, DEPARTMENT D WHERE E.DNO=D.DNUMBER;
Output –

 Q15. Make a list of all project numbers for projects that involve an employee whose last
name is 'Narayan’ either as a worker or as a manager of the department that controls
the project.

SELECT DISTINCT(PNUMBER) FROM PROJECT WHERE PNUMBER IN(SELECT P.PNUMBER
FROM PROJECT P, EMPLOYEE E, DEPARTMENT D WHERE E.LNAME='Narayan' AND
D.MGRSSN=E.SSN AND P.DNUM=D.DNUMBER) OR PNUMBER IN (SELECT W.PNO FROM
WORKS_ON W, EMPLOYEE E WHERE E.SSN=W.ESSN AND E.LNAME='Narayan');

 Q16(a).Increase the salary of all employees working on the 'ProductX' project by 15%.
(b)Retrieve employee name and increased salary of these employees.

a)UPDATE EMPLOYEE SET SALARY=SALARY+SALARY*0.15 WHERE SSN IN (SELECT ESSN
FROM WORKS_ON WHERE PNO IN (SELECT PNUMBER FROM PROJECT WHERE
PNAME='ProductX'));

b) SELECT FNAME||' '||MINIT||' '||LNAME AS NAME, SALARY FROM EMPLOYEE WHERE
SSN IN (SELECT ESSN FROM WORKS_ON WHERE PNO IN (SELECT PNUMBER FROM PROJECT
WHERE PNAME='ProductX'));

Q17. Retrieve a list of employees and the project name each works in,
ordered by the employee's department, and within each department
ordered alphabetically by employee first name.
SELECT E.FNAME,E.LNAME,P.PNAME FROM EMPLOYEE E, DEPARTMENT D,
PROJECT P WHERE E.DNO=D.DNUMBER AND D.DNUMBER=P.DNUM ORDER
BY D.DNAME, E.FNAME ASC;

Q18. Select the names of employees whose salary does not match with salary of any
employee in department 10.
SELECT FNAME||' '||MINIT||' '||LNAME NAME FROM EMPLOYEE WHERE SALARY NOT
IN(SELECT SALARY FROM EMPLOYEE WHERE DNO=10) ;

Q19. Retrieve the name of each employee who has a dependent with the same first name
and same sex as the employee.
SELECT E.FNAME||' '||E.MINIT||' '||E.LNAME NAME FROM EMPLOYEE E, DEPENDENT T
WHERE E.FNAME=T.DEPENDENT_NAME AND E.SEX=T.SEX AND T.ESSN=E.SSN;

Q20. Retrieve the employee numbers of all employees who work on project located in
Bellaire, Houston, or Stafford.
SELECT SSN FROM EMPLOYEE WHERE SSN IN (SELECT ESSN FROM WORKS_ON WHERE PNO
IN(SELECT PNUMBER FROM PROJECT WHERE PLOCATION IN('Bellaire','Houston','Stafford')));

Q21. Find the sum of the salaries of all employees, the maximum salary, the minimum
salary, and the average salary. Display with proper headings.
SELECT SUM(SALARY) "Total Salary", MAX(SALARY) "Maximum Salary", MIN(SALARY)
"Minimum Salary", AVG(SALARY) "Average Salary" FROM EMPLOYEE;
Output –

Q22. Find the sum of the salaries and number of employees of all employees of the
‘Marketing’ department, as well as the maximum salary, the minimum salary, and the average
salary in this department.

Select count(*)”No Of Emp. In Research Dept.”,sum(salary)”Salary Sum”,max(salary)”Max
Salary,min(salary)”Minimum Salary”,avg(salary)”Average Salary” from employee,department
Where dname=’marketing’ and dno=dnumber;

Q23. Select the names of employees whose salary is greater than the average salary of all
employees in department 10
SELECT FNAME||' '||MINIT||' '||LNAME "NAME FROM EMPLOYEE WHERE SALARY >(SELECT
AVG(SALARY) FROM EMPLOYEE WHERE DNO=10) ;

Q24. For each department, retrieve the department number, the number of employees in the
department, and their average salary.

SELECT DNO, COUNT(DNO), AVG(SALARY) FROM EMPLOYEE GROUP BY DNO;

Q25. For each project, retrieve the project number, the project name, and the number of
employees who work on that project.

SELECT PNUMBER, PNAME, COUNT(*) FROM PROJECT, WORKS_ON WHERE
PNUMBER=PNO GROUP BY PNUMBER, PNAME;

Q26. Change the location and controlling department number for all projects having
more than 5 employees to ‘Bellaire’ and 6 respectively.

UPDATE PROJECT SET PLOCATION='Bellaire', DNUM=6 WHERE PNUMBER IN(SELECT
PNO FROM WORKS_ON GROUP BY PNO HAVING COUNT(PNO)>5);

Q27. For each department having more than 10 employees, retrieve the department no,
no of employees drawing more than 40,000 as salary

SELECT DNUMBER, COUNT(*) FROM DEPARTMENT, EMPLOYEE WHERE DNUMBER=DNO
AND SALARY>40000 AND DNO IN(SELECT DNO FROM EMPLOYEE GROUP BY DNO HAVING
COUNT(*)>10) GROUP BY DNUMBER;

Q28. Insert a record in Project table which violates referential integrity constraint with
respect to Department number. Now remove the violation by making necessary
insertion in the Department table
 INSERT INTO PROJECT VALUES (‘ProductA’,4,’Spring’,2);

INSERT INTO DEPARTMENT VALUES (‘Analysis’,2,66688, TO_DATE(‘3-FEB-1990’,’DD-MON-
YYYY’));
Output –
INSERT INTO PROJECT VALUES (‘ProductA’,4,’Spring’,2);
Output –

Q29. Delete all dependents of employee whose ssn is ‘123456789’.
DELETE FROM DEPENDENT WHERE ESSN=12345;

Q30. Perform a query using alter command to drop/add field and a
constraint in Employee table

ALTER TABLE DEPENDENT DROP CONSTRAINT CHK_SEX2;
 ALTER TABLE DEPENDENT ADD CONSTRAINT CHK_SEX2 CHECK (SEX IN
('M','F','m','f'));
ALTER TABLE EMPLOYEE ADD Bonus NUMBER(5);
ALTER TABLE EMPLOYEE DROP COLUMN Bonus;

